今天给各位分享球形电容器电容求解的知识,其中也会对球形电容器电容怎么求进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
有一球形电容器,其内球面半径为R1,外球面半径为R2,两球面之间为真空。求...
有一球形电容器,其内球面半径为R1,外球面半径为R2,两球面之间为真空。求:(1)此球形电容器的电容。(2)当电容器的带电量为Q时电容器储存的能量... 有一球形电容器,其内球面半径为R1,外球面半径为R2,两球面之间为真空。求:(1)此球形电容器的电容。
解:(1)设内球壳带点Q,由高斯定理得: E=Q/(4πε0εrR^2);对上式两边对R从R1积到R2,得电势: U12=Q/(4πε0εrR1^2)-Q/(4πε0εrR2^2);解出Q即可。
(1)球内场强为零;导体球与球壳之间场强(设导体球带Q)为E=KQ/r2,这里K为常数,r2是r的2次方;球壳外场强为零。(2)球与球壳间的电势差为U=KQ(1/R1-1/R2),这里RR2与题目意思想同。
则内球壳电势为U,于是静电势能为:We=0.5∫∫σUdS=0.5U∫∫σdS=0.5UQ=0.5CU=2πε0R1R2U/(R2-R1)。电容器储能计算式:由于电容器的电压和电量是一对相互影响的物理量,所以不能直接套用电压不变时候的电能计算公式,最后求得电容器储能计算公式Ec=1/2CU^2。
关于球形电容器电容求解和球形电容器电容怎么求的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。